(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2) → mark(U11(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(0) → ok(0)
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(U11(tt, N)) → mark(N)
active(U21(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(and(isNat(V1), isNat(V2)))
active(isNat(s(V1))) → mark(isNat(V1))
active(plus(N, 0)) → mark(U11(isNat(N), N))
active(plus(N, s(M))) → mark(U21(and(isNat(M), isNat(N)), M, N))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
top(ok(X)) → top(active(X))
proper(tt) → ok(tt)
and(mark(X1), X2) → mark(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
s(ok(X)) → ok(s(X))
U11(mark(X1), X2) → mark(U11(X1, X2))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
proper(0) → ok(0)
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
top(mark(X)) → top(proper(X))
Rewrite Strategy: INNERMOST
(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6, 7, 8]
transitions:
ok0(0) → 0
active0(0) → 0
tt0() → 0
mark0(0) → 0
00() → 0
U110(0, 0) → 1
top0(0) → 2
proper0(0) → 3
and0(0, 0) → 4
isNat0(0) → 5
s0(0) → 6
plus0(0, 0) → 7
U210(0, 0, 0) → 8
U111(0, 0) → 9
ok1(9) → 1
active1(0) → 10
top1(10) → 2
tt1() → 11
ok1(11) → 3
and1(0, 0) → 12
mark1(12) → 4
isNat1(0) → 13
ok1(13) → 5
and1(0, 0) → 14
ok1(14) → 4
s1(0) → 15
ok1(15) → 6
U111(0, 0) → 16
mark1(16) → 1
s1(0) → 17
mark1(17) → 6
plus1(0, 0) → 18
mark1(18) → 7
U211(0, 0, 0) → 19
ok1(19) → 8
01() → 20
ok1(20) → 3
plus1(0, 0) → 21
ok1(21) → 7
U211(0, 0, 0) → 22
mark1(22) → 8
proper1(0) → 23
top1(23) → 2
ok1(9) → 9
ok1(9) → 16
ok1(11) → 23
mark1(12) → 12
mark1(12) → 14
ok1(13) → 13
ok1(14) → 12
ok1(14) → 14
ok1(15) → 15
ok1(15) → 17
mark1(16) → 9
mark1(16) → 16
mark1(17) → 15
mark1(17) → 17
mark1(18) → 18
mark1(18) → 21
ok1(19) → 19
ok1(19) → 22
ok1(20) → 23
ok1(21) → 18
ok1(21) → 21
mark1(22) → 19
mark1(22) → 22
active2(11) → 24
top2(24) → 2
active2(20) → 24
(4) BOUNDS(1, n^1)